引言
隨著平面顯示器的大規模應用和大屏幕平板顯示器的出現,紅外觸摸屏的應用已十分廣泛。同時,分辨率的進一步提高成為紅外觸摸屏應用于大屏幕的關鍵,本文提出了一種提高紅外式觸摸屏分辨率的方法。
系統結構及工作原理
系統工作原理
紅外觸摸屏基本原理是光束阻斷技術,它不需要在原來的顯示器表面覆蓋任何材料,只需在顯示屏幕的四周安放一個框架??蚣軆蓚€對邊上,一邊安裝紅外發光二極管(LED),另一邊安裝紅外線探測器,在顯電感器廠家示屏幕的表面形成一個由紅外線組成的柵格。當有任何物體進入這個柵格的時候,就會阻擋一些光線,光電轉換電路就會收到變化的信號,由ADC轉換后,MCU將計算的觸摸位置坐標傳遞給操作系統。
早期紅外觸摸屏分辨率直接由紅外管對數決定,觸摸分辨率就等于屏的物理分辨率。如果采用模擬信號處理方式對接收的信號強度進行分級,對于接收的信號,不僅要判斷一體電感其是否被阻擋,還要判斷出被阻擋的程度。如圖1所示,觸摸物的不同位置將導致接收信號的強度差異,因此,觸摸物的位置與接收的紅外信號強度有直接的對應關系,即使觸摸物移動非常小的距離,也會導致信號強度發生改變,即利用模擬信號的處理方式可以得到極高的分辨率。
采用模擬信號處理方式的觸摸屏分辨率主要由紅外管對數和模數轉換精度決定差模電感器,即觸摸屏分辨率=紅外管對數×單對紅外管能實現的分辨率。觸摸屏坐標由紅外管的物理坐標和觸摸點在相應管中的坐標共同決定。
系統結構
該系統主要紅外光信號發射電路、光電轉換電路和信號處理電路組成。結構組成框圖如圖2所示。
硬件設計
紅外發射信號電路設計
紅外信號發射電路主要由MAX6966構成,MAX6966是10端口、恒流LED驅動器,能驅動多支紅外發光管,且管子發光強度一致性很好。MAX6966串口外設可為微處理器提供10個額定電壓為7V的I/O端口。
如圖3所示,MAX6966/MAX6967為通用輸入/輸出(GPIO)外設,可提供P0~P9共10個I/O端口,通過高速SPI兼容串口控制。這10個I/O端口可配置為邏輯輸入、開漏邏輯輸出和恒流吸人的任意組合,無論作為邏輯輸入、開漏邏輯輸出,還是恒流吸入,端口都可承受獨立于MAX6966或MAX6967電源的7V電壓。配置為恒流吸入的輸出端口,可設為吸入10mA或20mA的恒流。靜態端口電流可為靜態,也可以是占空比為3/256~254/256的PWM波形,以減小平均電流。
端口配置為開漏邏輯輸出時,其吸入電流能力相對較弱,但仍能滿足正常邏輯電平輸出的要求。開漏邏輯輸出通常需要上拉電阻連接到適當的正電源,以提供邏輯高電平參考。弱驅動能力意味著短路電流較低,即使不慎由配置為手機電感器邏輯輸出的端口驅動LED,也不會對LED造成損壞。
MAX6966應用于紅外發射管驅動電路的另一個極大優勢是它可以采用兩種方式進行多片級聯。一種是多CS連接共模電感器,并聯DIN、SCLK,并對每個MAX6966器件提供單獨的CS。另一種是將一個器件的DOUT連到下一個器件的DIN,并聯SCI。K和CS,實現多個MAX6966的菊花鏈連接。
紅外接收處理信號電路
考慮到紅外觸摸屏的使用環境和紅外接收管的數量,紅外信號接收電路須滿足體積小、接線簡單、探測靈敏度高、信號穩定易于處理等要求。據此,本文光電轉換電路設計如圖4所示。這里,場效應管與偏置電阻組成的恒流源為光電三極管提供幾微安至上百微安的電流,調節偏置電阻的阻值可改變。Q點表明了電流源兩端的等效直流電阻和等效交流電阻是兩條不同斜率的直線。可以看出,交流電阻遠大于直流電阻。利用電流源的直流電阻小、交流電阻大的特點,可將BJT放大管的集電極負載改為電流源電路。為保證靜態電流方向一致,采用N溝道JFET構成電流源。將NJFET電流源的伏安特性與BJT輸出特性繪在一起,可得圖5。 大功率電感廠家 |大電流電感工廠